Bayesian nonparametric binary regression via random tessellations
نویسندگان
چکیده
منابع مشابه
Bayesian Nonparametric Binary
In environmental management, we often have to deal with binary response variables whose outcome dictates the course of action. This paper introduces a nonparametric Bayesian binary regression model that is more exible than the commonly used logistic or probit models. Due to the Bayesian feature, the model can be easily used to combine observed data with our knowledge of the subject to produce s...
متن کاملIncremental Nonparametric Bayesian Regression
In this paper we develop an incremental estimation algorithm for infinite mixtures of Gaussian process experts. Incremental, local, non-linear regression algorithms are required for a wide variety of applications, ranging from robotic control to neural decoding. Arguably the most popular and widely used of such algorithms is currently Locally Weighted Projection Regression (LWPR) which has been...
متن کاملBayesian nonparametric covariance regression
Capturing predictor-dependent correlations amongst the elements of a multivariate response vector is fundamental to numerous applied domains, including neuroscience, epidemiology, and finance. Although there is a rich literature on methods for allowing the variance in a univariate regression model to vary with predictors, relatively little has been done in the multivariate case. As a motivating...
متن کاملNonparametric Bayesian Regression Methods
A common problem in statistics, and other disciplines , is to approximate adequately a function of several variables. In this paper we review some possible nonparametric Bayesian models with which we can perform this multiple regression problem. We shall also demonstrate how these basic models can be extended to allow the analysis of time series , both conventional and nancial, survival analysi...
متن کاملBayesian adaptive nonparametric M-regression
Nonparametric regression has been popularly used in curve fitting, signal denosing, and image processing. In such applications, the underlying functions (or signals) may vary irregularly, and it is very common that data are contaminated with outliers. Adaptive and robust techniques are needed to extract clean and accurate information. In this paper, we develop adaptive nonparametric M-regressio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics & Probability Letters
سال: 2009
ISSN: 0167-7152
DOI: 10.1016/j.spl.2009.07.026